Dispersion and uniform L1-stability estimates of the Vlasov-Poisson system in a half space
نویسندگان
چکیده
منابع مشابه
Lagrangian Solutions to the Vlasov-poisson System with L1 Density
Abstract. The recently developed theory of Lagrangian flows for transport equations with low regularity coefficients enables to consider non BV vector fields. We apply this theory to prove existence and stability of global Lagrangian solutions to the repulsive Vlasov-Poisson system with only integrable initial distribution function with finite energy. These solutions have a well-defined Lagrang...
متن کاملstability and attraction domains of traffic equilibria in day-to-day dynamical system formulation
در این پژوهش مسئله واگذاری ترافیک را از دید سیستم های دینامیکی فرمول بندی می کنیم.فرض کرده ایم که همه فاکتورهای وابسته در طول زمان ثابت باشند و تعادل کاربر را از طریق فرایند منظم روزبه روز پیگیری کنیم.دینامیک ترافیک توسط یک نگاشت بازگشتی نشان داده می شود که تکامل سیستم در طول زمان را نشان می دهد.پایداری تعادل و دامنه جذب را توسط مطالعه ویژگی های توپولوژیکی تکامل سیستم تجزیه و تحلیل می کنیم.پاید...
Stability for the gravitational Vlasov-Poisson system in dimension two
We consider the two dimensional gravitational VlasovPoisson system. Using variational methods, we prove the existence of stationary solutions of minimal energy under a Casimir type constraint. The method also provides a stability criterion of these solutions for the evolution problem. Key-words. Vlasov-Poisson system – stellar dynamics – polytropic gas spheres – gravitation – mass – energy – ki...
متن کاملL Stability for the Vlasov-poisson-boltzmann System around Vacuum
Based on the global existence theory of the Vlasov-Poisson-Boltzmann system around vacuum in the N -dimensional phase space, in this paper, we prove the uniform L1 stability of classical solutions for small initial data when N ≥ 4. In particular, we show that the stability can be established directly for the soft potentials, while for the hard potentials and hard sphere model it is obtained thr...
متن کاملUniform Convergence of a Linearly Transformed Particle Method for the Vlasov-Poisson System
A particle method with linear transformation of the particle shape functions is studied for the 1d-1v Vlasov-Poisson equation, and a priori error estimates are proven which show that the approximated densities converge in the uniform norm. When compared to standard fixedshape particle methods, the present approach can be seen as a way to gain one order in the convergence rate of the particle tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Sciences
سال: 2009
ISSN: 1539-6746,1945-0796
DOI: 10.4310/cms.2009.v7.n1.a10